![[Android稳定性] 第050篇 [问题篇] slab内存泄露造成设备黑屏](https://halo-19274848.oss-cn-shanghai.aliyuncs.com/2025/06/halo_wquzpo4.jpg?x-oss-process=image/resize,w_800,m_lfit)
[Android稳定性] 第050篇 [问题篇] slab内存泄露造成设备黑屏
测试机经过智能长期充电后出现卡顿和黑屏现象,分析发现是slab内存泄露问题导致。通过slabtrace定位到泄漏内存的类型为“kmalloc-xxx”,并发现charger模块存在内存泄漏。最终通过修改代码,在申请内存前先判断是否已经申请过,避免重复申请,成功解决问题。
![[linux内存管理] 第027篇 Linux ARM64 虚拟地址布局](https://halo-19274848.oss-cn-shanghai.aliyuncs.com/2025/06/halo_fqmrh3x.png?x-oss-process=image/resize,w_800,m_lfit)
[linux内存管理] 第027篇 Linux ARM64 虚拟地址布局
本文详细讨论了ARM64架构下Linux内核的虚拟地址布局,介绍了内核版本、配置参数以及虚拟地址和物理地址的位数。文中解释了如何根据配置参数计算虚拟地址空间的不同区域,包括线性映射区、模块区、内核镜像区、vmalloc区、固定映射区、PCI I/O区等,并给出了每个区域的起始地址、结束地址和大小。文章最后提到,由于一个内核提交,线性映射区域被下移至低地址处。
![[linux内存管理] 第026篇 从内核源码看 slab 内存池的创建初始化流程](https://halo-19274848.oss-cn-shanghai.aliyuncs.com/2025/06/halo_o9u8kmg.png?x-oss-process=image/resize,w_800,m_lfit)
[linux内存管理] 第026篇 从内核源码看 slab 内存池的创建初始化流程
本文介绍了Linux内核中slab内存池的创建过程。slab内存池是一种高效的内存管理机制,用于分配和回收固定大小的内存块。文章详细解释了slab cache的创建流程,包括kmem_cache_create接口函数的参数、slab cache的架构设计、内核如何安排slab对象在内存中的布局等。此外,文章还介绍了slab allocator体系的初始化过程,以及内核如何解决创建第一个slab cache时遇到的“先有鸡还是先有蛋”的问题。最后,文章总结了slab cache的创建过程和slab allocator体系的初始化过程,为读者提供了深入理解Linux内核内存管理的参考。
![[linux内存管理] 第025篇 细节拉满,80 张图带你一步一步推演 slab 内存池的设计与实现](https://halo-19274848.oss-cn-shanghai.aliyuncs.com/2025/06/halo_o9u8kmg.png?x-oss-process=image/resize,w_800,m_lfit)
[linux内存管理] 第025篇 细节拉满,80 张图带你一步一步推演 slab 内存池的设计与实现
本文详细介绍了 Linux 内核中用于零散小内存块分配的内存池——slab 分配器。首先回顾了 Linux 内存分配的宏观链路,然后解释了为什么需要 slab 分配器,以及它在内核中的应用场景。接着,从物理内存页 page 开始,逐步演进到完整的 slab 对象池架构,并详细介绍了 slab 的内存布局和基础信息管理。随后,阐述了 slab cache 的组织架构,包括本地 cpu 缓存 kmem_cache_cpu 和 NUMA 节点缓存 kmem_cache_node。最后,详细介绍了 slab cache 的内存分配和释放原理,包括快速路径和慢速路径,以及不同场景下的分配和释放逻辑。
![[linux内存管理] 第024篇 slab内存分配器概述](https://halo-19274848.oss-cn-shanghai.aliyuncs.com/2025/06/halo_o9u8kmg.png?x-oss-process=image/resize,w_800,m_lfit)
[linux内存管理] 第024篇 slab内存分配器概述
本文主要介绍了Linux内核中的SLUB内存分配器,它是一种针对内核对象进行高效内存分配和回收的机制。以下是文章摘要: SLUB分配器通过以页为单位分配内存,减少了内存浪费,但提高了分配效率。它使用 struct kmem_cache 数据结构来管理每种类型的内核对象,通过批量操作、无锁路径和每CPU本地缓存实现高效与低碎片。文章详细介绍了SLAB分配器中的核心数据结构,包括 struct kmem_cache、slab_flags_t、struct kmem_cache_cpu 和 struct kmem_cache_node,以及它们的作用和关键成员。 SLUB通过减少全局锁的使用,提高多核并发安全性,并通过统计和调优来优化性能。此外,文章还解释了 struct page 中用于SLUB的部分,以及SLUB的对象空间布局。 总体来说,SLUB分配器通过优化内存分配策略,提高了Linux内核的内存利用率和性能。

任务调度器:从入门到放弃(一)
本文是关于Linux内核调度器的科普文章,作者XiaoGang通过内部项目复盘中的实际问题,引出了调度器的重要性和工作原理。文章主要内容包括: 1. 调度器的作用:CPU资源有限,但任务数量众多,调度器通过分时复用让用户感觉多个线程同时运行。 2. Linux的调度类:包括stop、deadline、realtime、fair和idle等,各有不同的优先级。 3. RT调度类与fair调度的区别:RT调度类按照优先级顺序选择任务,而fair调度类采用虚拟运行时间(virtual runtime)来决定任务的调度。 4. 调度器管理的任务:只有处于TASK_RUNNING状态的进程在调度器的管理范围内。 5. 比例调度的问题:通过大量低优先级线程可能占用较高资源配额。 6. cgroup的作用和问题:cgroup通过cpu.shares控制资源配额,解决比例调度问题,但同时也带来了一些新的挑战。 文章以实例和实验说明问题,深入浅出地解释了调度器的复杂机制。下周将更新续篇,继续探讨相关话题。
![[Android稳定性] 第049篇 [问题篇] 软中断霸占CPU导致watchdog无法及时喂狗](https://halo-19274848.oss-cn-shanghai.aliyuncs.com/2025/06/halo_tstlhyw.png?x-oss-process=image/resize,w_800,m_lfit)
[Android稳定性] 第049篇 [问题篇] 软中断霸占CPU导致watchdog无法及时喂狗
当前文章内容已隐藏,评论后可见。
![[Android稳定性] 第048篇 [原理篇] Android SWT机制介绍](https://halo-19274848.oss-cn-shanghai.aliyuncs.com/2025/06/halo_ahgrdvk.png?x-oss-process=image/resize,w_800,m_lfit)
[Android稳定性] 第048篇 [原理篇] Android SWT机制介绍

「知不可忽骤得,托遗响于悲风」
![[Android稳定性] 第047篇 [问题篇] Unexpected kernel BRK exception at EL1](https://halo-19274848.oss-cn-shanghai.aliyuncs.com/2025/06/halo_ityiau2.webp?x-oss-process=image/resize,w_800,m_lfit)
[Android稳定性] 第047篇 [问题篇] Unexpected kernel BRK exception at EL1
当前文章内容已隐藏,评论后可见。

【深入内核】linux ftrace详解
Ftrace(Function Tracer)是Linux内核自带的轻量级跟踪框架,用于记录内核内部事件和函数调用,帮助开发者分析系统执行路径、时序瓶颈和异常行为。Ftrace支持多种trace类型,包括function、function_graph、blk等,可以通过静态插桩和动态插桩两种方式实现。Ftrace可以通过配置内核参数和挂载debugfs文件系统来使能,并通过trace目录下的文件进行操作和管理。常见的trace event包括sched_switch、sched_wakeup、power/suspend_resume等,可以用于调试和分析系统性能和延迟问题。
![[音乐分享] 莫失莫忘](https://halo-19274848.oss-cn-shanghai.aliyuncs.com/2025/06/halo_giinbwi.png?x-oss-process=image/resize,w_800,m_lfit)
[音乐分享] 莫失莫忘
这篇文章介绍了几个角色在夏日中的梦想与愿望,他们各自有着不同的目标和追求,有的渴望成为英雄,有的希望守护家园,还有的只想要简单快乐的生活。这些梦想充满了青春的气息和对未来的憧憬。